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Numerical techniques used for modeling the macroscopic and 
microscopic behavior of materials in processing are reviewed. The 
macromodels are based on the concept of a material continuum for 
which the densities of mass, momentum, and energy exist in the mathe- 
matical sense of the continuum and the microstructure of matter can be 
ignored. The micromodels, on the other hand, are based on the con- 
cepts of micromechanics and statistics applied to the study of the 
microstructure of the material. In this paper, formulation of the partial 
differential equations that govern the macroscopic behavior of materials 
resulting from the material continuum assumption is first presented. The 
relevant numerical techniques for solving these equations and for 
handling the associated boundary conditions are then discussed. As a 
demonstration, a continuous drawing process is modeled to illustrate 
the procedure involved and the information revealed. In microscopic 
modeling, the numerical and statistical techniques used to simulate the 
microstructure formation of materials are reviewed. Examples applied to 
solidification and recrystallization as well as defect formation are then 
presented. Finally following an examination of the approaches that 
incorporate the microscopic models into the macroscopic models, 
recommendations on the future development are given. ©1992 
Academic Press, Inc. 

1, I N T R O D U C T I O N  

Numerical techniques have been extensively utilized for 
modeling the macroscopic and microscopic behaviors of 
materials in processing in the past two decades. In macro- 
scopic modeling, the concept of material continuum for 
which the densities of mass, momentum, and energy exist 
in the mathematical sense of the continuum is applied to 

study the physical behavior of materials. The continuum 
is a mathematical idealization of the real world and is 
applicable to problems in which the microstructure of 
matter can be ignored. When the microstructure is to be 
studied, the concepts of micromechanics and statistics 
should be applied. 

Based on either the continuum or micromechanics 
concept, partial differential equations governing different 
material behaviors can usually be formulated. It is well 
known that in macromodeling, the Navier-Stokes equation 
for the momentum field, the Fourier equation for the 
temperature field, and the Maxwell equation for the elec- 
tromagnetic field r 1, 2 ] are the respective governing equa- 
tions. In general, these partial differential equations should 
be considered simultaneously. Consequently, depending on 
the stiffness of the system, advanced numerical coupling 
techniques which further complicate the already formidable 
situation are often required. For example, in modeling 
the induction heating process, the electromagnetic, heat 
transfer, and fluid flow behaviors are strongly coupled and 
should be solved together. 

Many numerical techniques, including the finite dif- 
ference method (FDM), finite element method (FEM), and 
boundary element method (BEM), have been developed to 
solve these differential equations with complex boundary 
conditions arising from material processing. Recently, the 
generalized finite difference method (GFDM) developed 
from the body-fitted concept has received great attention 
because of its inherent simplicity and flexibility in applica- 
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tions to irregular geometry problems. It should be noted 
that this method requires some advanced mathematical 
skills [1, 2]. 

The boundary condition is a critical parameter for 
obtaining the final result. It is extremely difficult to deter- 
mine or control the boundary conditions for the materials 
under processing. Recently, many numerical schemes have 
been developed to model the boundary conditions, par- 
ticularly, the free and moving boundary problems through 
the finite element or finite difference methods. For the free 
boundary problem, Simpson's rule, the Galerkin finite 
element formulation approach, and the Lagrangian finite 
element formulation have usually been adopted. For the 
moving boundary problem, the volume of fluid technique 
using fixed meshes and the remeshing technique through 
an arbitrary Lagrangian-Eulerian formulation have been 
adapted. 

After extensive development of macroscopic models, 
microscopic mathematical models have emerged in the last 
decade. These microscopic models attempt to describe 
quantitatively diverse phenomena occurring at the micro- 
structure scale such as solidification, recrystallization, and 
defect formation. These phenomena include nucleation, 
growth, and impingement of grains. The micromodels are 
initially developed using a combination of basic theory and 
experimental observation. For more complex situations, 
numerical methods associated with a statistical approach 
such as the Monte Carlo method are applied to the 
microsopic modeling. Because the micromodels exhibit high 
nonlinearity, more restrictive numerical conditions, such as 
a smaller time step and a finer mesh size are often required 
for obtaining stable and convergent numerical solutions. 

In this paper, following a discussion of the modeling 
aspects of the macro and micro behavior of materials, for- 
mulation of the governing partial differential equations for 
the macroscopic models are first reviewed. Then the prin- 
cipal numerical methods for solving these governing equa- 
tions are discussed. The associated boundary conditions 
including the free and moving boundaries are also 
examined. To illustrate the modeling procedure involved, a 
continuous drawing process widely used in industry is 
considered. In microscopic modeling, the computational 
aspects of simulating the phenomena occurring at micro- 
structure scales such as solidification, recrystallization, and 
defect formation are presented. The concept of coupling of 
the macro/microscopic modeling and its applications are 
also discussed with an illustration included. Finally, com- 
ments on future trends in modeling schemes are given. 

II. M O D E L I N G  O F  M A C R O S C O P I C  B E H A V I O R  

Based on the concept of a material continuum, the 
formulation of the macro behavior of materials under 
processing is presented in this section. 

Material Flow in Processing 

Material processing involves flow through complex 
geometrical shapes and often includes free- or moving- 
surface flows; the flow properties are usually temperature 
dependent. Modeling of the material flow has to cope with 
these geometric and material non-linearities. In this sub- 
section, formulation of material flow is considered. 

Governing equations. A dynamic equation describing fluid 
motion may be obtained by applying Newton's second law 
to a field description of fluid flow in which the properties of 
a flow field are defined by continuous functions of space 
coordinates and time. The field description for fluid 
particles, in Cartesian tensor notation, is governed by: 

~(puiuj) (~ff ji ~(Pu,_____2 + = pbi + (1) 
~t Oxj c~xj 

and 

~p + ~(ouj) = 0, (2) 
0t ¢?xj 

where p is the density of the material melt; t is the time; xj 
are the Cartesian coordinates; uj is the velocity vector; b; is 
the body force; and aji is the stress tensor. 

Constitutive equations. Before the momentum equations 
can be employed in the solution of problems, suitable 
expressions for the stresses, cr U in Eq. (1), must be obtained. 
For material melts, the constitutive relationships may be 
obtained using either the continuum mechanics approach or 
the molecular approach. The popular Newtonian fluid or 
the well-known power law model is usually developed 
through the continuum mechanics approach. There are 
many other consitutive relationships used for different 
material fluids. Some discusions on other non-linear 
constitutive equations may be found in Refs. [3, 4]. 

Primitive variable formulation. If the viscosity is non- 
Newtonian, the primitive variable approach is more con- 
venient. The momentum equations can be solved in terms of 
the primitive variables, ui and pressure (or stresses), as 
indicated in Eqs. (1) and (2). These equations play a domi- 
nant role in modeling the materials in the liquid state, since 
they contain distributed force terms for velocity within the 
liquid phase. The body forces of interest here are the 
buoyancy body forces. Other driving forces include surface 
forces resulting from temperature gradient-induced differen- 
ces in surface tension and variation of phase densities across 
the melt-freeze interface which enter only as boundary con- 
ditions. These equations are only needed to describe the 
materials in the liquid state. In the solid phase, the velocity 
is zero. To obtain the temperature information, the momen- 
tum equation should be coupled with the heat transfer 
equation which will be discussed in the next section. 
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There have been a large number of modeling efforts using 
the primitive variable approach. Some numerical algo- 
rithms, such as SIMPLE and SIMPLER [5], have been 
developed to solve these simultaneous primitive-variable 
equations. The SIMPLE algorithm is based on a successive 
guess-and-correct procedure. The velocity components are 
first calculated from the momentum equations using an 
assumed pressure field. The pressures and velocities are then 
corrected so as to satisfy the continuity equation. This pro- 
cess continues until the solution converges. This iteration 
scheme has been successfully adopted in the conventional 
finite difference method as well as the generalized finite dif- 
ference (GFD) method. The GFD method not only over- 
comes those difficulties arising from the non-uniform mesh 
arrangement but also maintains the inherent simplicity of 
the finite difference method. It has been adopted to model 
both the thermal [-6] and flow [.7] behaviors. 

Vortieity variable approach. If the melt is Newtonian, the 
momentum equations can be solved either in terms of the 
primitive variables or indirectly in terms of the vorticities or 
stream functions. The concept of vorticity is very important 
for internal re-circulating flow. Mathematically, it is the curl 
of Eq. (1) that produces either buoyant or force stirring. 
The vorticity-velocity formulation could be used for the 
solution of the flow problem in the liquid metal. For 
three-dimensional problems, six dependent variables (three 
vorticity and three velocity components) need to be solved. 
This formulation avoids the necessity of a staggered-grid 
arrangement, which is required in the above primitive- 
variable approach [.8], where difficulties are encountered 
with the pressure boundary conditions and instabilities 
resulting from satisfying continuity. Also the present 
formulation has better boundary conditions than the 
scalars/vector potential formulation [9]. In addition, 
although the stream function no longer exists in three- 
dimensional cases, the vorticity forms are useful for the 
interpretation of numerically predicted eddy strength, 
orientation, and direction of rotation in terms of the relative 
strength and orientation of the internally distributed driving 
forces within the liquid metal. 

Mushy or transition state. In phase change problems, 
characterized by the mushy zone or the transition state, the 
governing equation, Eq. (1), should be modified to reflect 
the phase change. Ganesan and Poirier [10] recently used 
the volume-average technique to derive the momentum 
equation in the mushy zone during solidification. In order 
to avoid dealing with the complex interfacial geometry in 
the mushy zone at the microscopic scale, the microscopic 
equations were averaged over some representative elemen- 
tary volume within the mushy zone (e.g., several dendrite 
arm spacings), while the macroscopic models can be 
resolved by standard techniques. 

The average procedure is based on the continuum 
hypothesis that the average quantities should be continuous 

functions of space and time and should be independent of 
the size of the average volume. When the element volume is 
very small, the average mass density (liquid mass divided by 
total mass in one mesh) of the interdendritic fluid varies 
discontinuously. As the size of the element volume increases, 
the fluctuation of the average density diminishes till the 
density or other average quantities become independent of 
the size of element volume. If the size of the element volume 
continues to increase to a value larger than or closer to the 
size of the mushy zone, the average value of the liquid 
density will increase. Because the bulk liquid zone will be 
included in this element volume, a general momentum 
equation in the mushy zone can be written with the 
permeability of dendritic network: 

@ 
-fl-~xi+ P,fl gi 

j 

1 C,,kuku,] 
- # L K  u/+ 

FOu~ ~uil =,,s, /3) 

where P l is density of the liquid, f l  is volume fraction of the 
liquid, gi is gravitational acceleration, ui is mass average 
velocity of the interdendritic liquid, p is average pressure, # 
is viscosity of the interdendritic liquid, Ci/k is third-order 
tensor resistance coefficient, and K o is permeability. 

Heat Transfer in Material Processing 

Heat transfer in material processing is complicated by the 
accompanying phase changes. The effective heat capacity 
formulation is utilized to reduce the number of governing 
equations for covering the liquid, solid, and mushy states of 
the material. 

Governing equations. Normally, the end products are used 
in the solid phase, but most of the end-use properties and 
shapes are developed during fluid-state or solidification. 
Therefore, the heat transfer equation must be considered in 
the liquis, solid, and mushy phases. This leads to the 
enthalpy method being developed. The merit of this method 
is that a single equation can accommodate both the solid 
and liquid phases as well as the mushy state r l l ,  12]. The 
material temperature, T, can be predicted from 

pc;  \ uj = \  xj/ + (4) 

where k is the thermal conductivity, Tis the temperature, u/, 
the velocity, is directly computed from the momentum 
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equation, Eq. (1), and ~b is the dissipation function, 
representing the internal heat generated by the viscosity dis- 
sipation which can be evaluated by providing the velocity 
distributions. The effective heat capacity Cp can be defined 
as 

L e m 
Cp = Cp + Tt_ T~ 

L, T~<~ T<~ Tt 
L =  0, otherwise, 

(5) 

where Cp is the specific heat and L is the heat of fusion per 
volume. In the mushy region, the temperature is lower than 
the liquidus temperature, Tt, and higher than the solidus 
temperature, T s. A linear relationship between the volume 
fraction of solid and T is assumed in the above equation. A 
similar assumption is also used for the thermal conductivity 
in the mushy region, k, 

k - k t  TI-  T 
k~-kl  T t -  T~ 

(6) 

where kt and ks are the conductivities at the liquidus and the 
solidus temperatures, respectively. 

Heating Source-Electroheating 

In material processing, heating is one of the major 
parameters in process operation and material property 
control. Many heating techniques have been developed 
including electromagnetic (or induction) heating, gas/oil 
fire heating, and electrical resistance radiant heating. While 
the latter two schemes can be simulated by imposing 
appropriate boundary conditions, the former one should be 
considered in the governing equation. As a result, the elec- 
tromagnetic distribution has to be determined first. In this 
subsection, a formulation of the electromagnetic heating 
behavior is presented. 

Electromagnetic equations. Electromagnetic behavior is 
governed by the Maxwell equations which, in their general 
forms, are coupled. For induction heating, the governing 
equations can be simplified to [12, 30] 

~J__2 = 0  (7) 
c~xi 

OBi 
- - = 0  (8) 
~xe 

(~E k OB i (9) eijk ~xj Ot 

~Hk 
eak ~x j  = Ji, (10) 

where Ji, Be, Ei, and H i a re  the current density, magnetic- 
flux density, electric-field intensity, and magnetic-field 
intensity, respectively; and eUk is the permutation symbol. 

Constitutive equations. The associated constitutive equa- 
tions are 

B i = p m H  i (11) 

Ji = aeEi, (12) 

where the material properties, #m and ao, are the magnetic 
permeability and the electric conductivity, respectively. 

For the purpose of solution, the first-order differential 
equations involving both Hi and Ee are combined to give a 
second-order equation in Hi or Ei only. For the magnetic 
field intensity, the governing equation becomes 

O2H e ~ n  i ~ [ n i ( l ~ l ' l m ~  
OX 2 = O'efim Ot ~3xi \JAm (~X i ,1 

l (~aoOHk ~°o~Hi3l (13) 

Theoretically, with appropriate initial and boundary 
conditions, the above governing equations can be solved 
mathematically. However, as indicated by Tseng [12], it is 
a nontrivial task to describe the needed boundary or inter- 
face conditions in terms of those primary variables, such as 
Hi or By As an alternative, it is convenient to use the 
magnetic vector potential Ae which is always continuous 
across the interface while H i and B e may not be so. 

Magnetic vector potential formulation. The magnetic 
vector potential with nonlinear properties is often used to 
formulate the electromagnetic behavior. The adoption of 
the magnetic vector potential provides a more convenient 
form for handling the interface conditions and reducing the 
vector component. If translational or rotational symmetry 
exists, the magnetic vector potential may possess only one 
component. 

Using the result of vector calculus, if OBi/~x i = 0 (Eq. 8) 
everywhere, there exists some vector field, Ai, and the 
corresponding governing equation can be found, 

= o"m \ 

1 {012 m OA k O[,£mOAi~ (14) 
[Am k, OXk ~Xi OXj OXj/] 

where q~ is the electric scalar potential, or the simpler linear 
form, in terms of Je, 

~32Ai_ (~Ai_.}_ 
(~X 20"e/'/m ~"-~- ~ / )  

= --ktmJi. (15)  
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For such fields, the above equation does not provide any 
particular advantage over the Poisson equation (13), since 
both are vector equations. However, as mentioned earlier, 
many circumstances occur, particularly where translational 
or rotational symmetry exists, in which J~ possesses only 
one vector component. In such cases, Ai may also possess 
only one component [30]. 

III. MODELING OF BOUNDARY CONDITIONS 

Although the materials processing can be described by 
the above governing equations, it is still necessary to have 
or describe the associated boundary conditions for 
obtaining quantitative results by solving these equations. 
When the boundary is fixed and only the boundary 
conditions need to be evaluated, it is referred to as a "fixed 
boundary," e.g., the heat transfer at the interface. Otherwise, 
the boundary itself is unknown a priori and has to be deter- 
mined and then used to estimate the dependent boundary 
conditions. When the boundary is in the steady state, this 
type of boundary is referred to as a "free boundary." Under 
the condition that the boundary changes due to kinematic 
and dynamic conditions, it is referred to as a "moving 
boundary." 

The fixed boundary conditions are relatively straight- 
forward and covered in many elementary numerical text- 
books. The details of this condition, therefore, will not be 
discussed further in this section. Both free and moving 
surfaces are intrinsic characteristics of any shape-changing 
process. The development of efficient numerical techniques 
for tracking free and moving boundaries has been identified 
as one of the most challenging topics in process modeling 
research. In this section, modeling of the free and moving 
boundary conditions encountered in material processing 
will be discussed. 

Free Boundary 

Free boundary problems are defined as steady state 
problems involving free surfaces, and usually involve con- 
tinuous forming processes such as extrusion, drawing, and 
calendering. Since the solution is a function of a surface 
shape which is not known a priori, the problem is a 
geometrically non-linear problem. 

At the free surface, the three conditions are generally 
required: (1) zero normal velocity, (2) zero tangential stress, 
and (3) normal stress balanced by surface tension, 

uini=O (16a) 

ao.njt~ = 0 (16b) 

aunjn~- S(1/pl + 1/p2) = 0, (16c) 

where ulni is the velocity normal to the surface, ao.njt ~ is the 
stress component tangential to the free surface, aunjn ~ is the 
normal stress, S is the surface tension coefficient, and Pl and 
P2 are the principal radii of curvature of the surface. If the 
boundary forces resulting from temperature gradient- 
induced differences in surface tension, e.g., the Manangoni 
effect, are included, the zero tangential stress condition, 
Eq. (16b), should be modified. 

The contact line between a stationary solid wall and a 
flowing liquid is a static contact line. There are two types of 
static contact lines: those which remain at corners and those 
which are free to flow along with the wall. The boundary 
condition for the first type is the specified location of the 
contact line, whereas a contact angle is needed for the 
second type. For most extrusion/drawing types of processes 
the contact line remains at the die exit corner, and the first 
type of boundary condition is sufficient. 

Kinematic boundary condition (iterative). The first suc- 
cessful solution for the free surface in die swell using the first 
surface conditions was due to Nickell et aL [-13] through 
the finite element method. In the axisymmetric case, the 
radial coordinates at the free surface, R(z), are integrated by 
the streamline equation, which is the equivalent form of 
Eq. (16a): 

dR u,[R(z), z] 
dz - u r [ R ( z ) ,  z]" 

(17) 

With the numerical representation 

j+ 1 = R j  -{- dz, (18) 
Lu~J 

where the superscript n is the iteration number and the sub- 
script j is the nodal position in the axial direction. The 
integral can be calculated using Simpson's rule. Chang et al. 
[14] also developed a similar approach using a more 
rigorous mathematical derivation. 

Normal stress (iterative). For the case of small surface ten- 
sion, the previous method, which updates the streamline 
coordinate with the newly calculated velocity vectors, i.e., 
the kinematic surface condition, is preferred. For larger sur- 
face tension, where the ratio of the surface tension to the 
viscous force becomes very large, the third boundary condi- 
tion, which uses the normal stress equation for iteration, is 
needed because the kinematic technique does not converge 
[ 15, 16 ]. The relative importance between the viscous force 
and surface tension force can be described by the capillary 
number. The procedure using the third surface boundary 
condition for tracking the free surface is described in Refs. 
[17-19]. The basic concept here in successive approxima- 
tions is to choose the surface condition which has a 
dominant effect on the surface shape for iterations. 
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Coupled finite element formulations. For problems within 
a range of intermediate surface tension effects, both iterative 
approaches converge very slowly. Ruschak [20] and Kistler 
and Scriven [15] indicated that the simultaneous calcula- 
tion of the complete set of nonlinear equations for the free 
surface location and the field variables (velocity com- 
ponents and pressure) give better convergence than the 
successive approximations. This additional degree of 
freedom represents a free nodal position with respect to 
some reference point. 

In this coupled approach the first surface condition, 
Eq. (16a), is posed in an integral form representing the 
absence of mass flow across the surface 

sniuidS:=O. (19) 

Following a Galerkin finite element formulation 
approach, the continuity equation, the momentum equa- 
tion, and the above surface integral equation are used to 
form a system of nonlinear algebraic equations. These can 
be solved by Newton's method at a quadratic rate of con- 
vergence. The other two surface conditions, Eq. (16b) and 
Eq. (16c), are applied in the standard way for Galerkin 
weighted residual formulations [-21 ]. 

Transient Lagrangian. Another effective approach is to 
use a Lagrangian description of fluid motion, including time 
as an independent variable [-22]. In the Lagrangian for- 
mulation, the independent variables are the material par- 
ticles and time, and the dependent variables are the spatial 
coordinates of all material particles and the time derivatives 
of the coordinates. 

In the Lagrangian finite element formulation, the 
material (rather than the space) and time need to be dis- 
cretized. The elements representing the discretized material 
then move with the newly calculated velocities during each 
time step. The prediction of free surface location is naturally 
included in this moving mesh algorithm. The first free sur- 
face condition, the zero normal velocity, will not be satisfied 
until a steady state is reached. 

Uncoupled approaches are generally easier to implement 
and require less computer storage at the expense of slower 
convergence and a limited range of surface tension effects. In 
coupled approaches the solutions converge with a quadratic 
rate for a broad range of surface tension effects, but the 
program is more complicated. In the transient Lagrangian 
formulation, the free surface locations are naturally deter- 
mined as the solution reaches its steady state. 

Moving Boundary 

In a moving boundary problem, part of the boundary 
moves according to prescribed kinematic and dynamic con- 
ditions. Moving boundary problems are usually associated 

with cyclic or batch type material processes, whereas free 
boundary problems are connected with continuous type 
processing. 

Like the free boundary techniques, there are many algo- 
rithms for tracking moving boundaries depending upon the 
choice of numerical method (finite element, finite difference, 
or boundary element) and the selection of a meshing system 
(moving or fixed meshes). Using the fixed mesh approach, 
the resolution of the free flow front definition is in the order 
of the mesh size. In achieving a better free front definition, 
the moving mesh approach seems to have good potential. 

Volume of fluid using fixed meshes. The volume of fluid 
(VOF) technique for front tracking, which was originally 
developed for the finite difference method [23-25], has 
been extended for for finite element applications. The VOF 
technique uses a fixed-mesh system with flow fronts passing 
through. Eliminating the remeshing requirement is the key 
benefit of using this fixed-mesh system for modeling moving 
boundary problems. The VOF algorithms for tracking the 
weldlines, where two flow fronts meet are much simpler 
than other techniques, such as adding elements or polyno- 
mial curve fitting. The triangle element is selected for its 
flexibility as well as its simplicity in integrating with this 
front tracking algorithm. 

The VOF technique for defining the flow front is derived 
from the basic concept of mass conservation in a com- 
pressible flow. This very powerful concept for finite element 
applications is extended here. Since the finite element 
method deals with integral equations, the integral form of 
this VOF equation becomes 

f f  u~dA=~f fdV,  (20) 

where f is the percentage of fill for each finite element con- 
trol volume. This f parameter is defined as the "density" of 
the control volume. 

For each filling time step, the percentage of fill for each 
control volume must be computed by using this "conserva- 
tion of mass equation." During the calculation, the normal 
component of the velocity vector should be integrated along 
each segment of the control volume boundary. Just like the 
density calculation, the f function can be determined by 
dividing the total current mass by the total volume. The par- 
tially filled control volumes are defined as the flow fronts. If 
the computed f is 100 %, the control volume is completely 
filled. Conversely, if f is zero, the control volume is empty. 
The filling analysis of the polymer injection molding process 
is one typical application of this VOF technique. 

Remeshing techniques using an ALE formulation. The 
arbitrary Lagrangian-Eulerian (ALF) formulation has 
been found to be very effective for solving this type of 
moving free surface problem [24-28]. The conservation 
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equations for momentum and energy are reformulated to 
accommodate the moving mesh. The time derivatives for the 
velocities and the temperature become 

0u, 0u, 0xj 0n, I 
0t ~ - 0 x j  at M + ~ E  (21a) 

0_~ M 0T0xj + 0 T  (21b) 
- ~x~ 0 t  M 0t  E 

where the subscript M denotes the moving mesh, the sub- 
script E the Eulerian description, and Oxj/Ot is the velocity 
of the mesh. In the Galerkin formulation, the continuity, 
momentum, and energy equations in the moving mesh 
system are 

[Oai 1 f 
J ~ LOx,j & = o (22a) 

Fo, , I P~ Lot + % -  ~? ) &A dv 

crij - -  dV-  ~ 3 pgi ~ dV axj 

- f ~aon jdA = 0 (22b) 

OpCp F OT+ ( fiJ- U*) ~ ]  Ot 

r O0 dV + J qJ-~xj - f  OqjnjdA=O, (22c) 

where ~, ~b, and O are the finite element shape functions, 
and U* is the element convection velocity. When U* = uj, 
these equations are Lagrangian. 

Because of shearing, the moving mesh will become 
distorted after a few time steps. An efficient remeshing 
algorithm is needed to reconstruct the mesh to assure the 
solution quality for continuous computation. Two effective 
remeshing schemes have been developed and tested [26]: 
one is convective adjustment and the other is search and 
interpolation. The basic concept of the convective adjust- 
ment scheme is to treat the action of remeshing as an extra 
nodal movement during that time step, making it equivalent 
to an additional convection term. Because this convective 
adjustment term is required for the matrix forming and 
solution, a complete time step is taken to finish the 
remeshing. The number of nodes and elements are constant 
before and after remeshing. In this scheme, the convective 
term has to be modified to include both the moving mesh 
and the remeshing effects. 

In the search and interpolation scheme, remeshing is 
considered to be a snapshot without time passage, and 
the updated Lagrangian formulation is continuously used 

throughout the computation. The search is to determine 
where in the old mesh element the new node is located. 
This can be implemented by checking the cross product 
between the new nodal vector and the four sides of each 
element. The unknowns at the new nodes such as velocity 
and temperature, have to be interpolated from the local 
coordinates of the old mesh. Both schemes yield the same 
velocity, pressure, and temperature profiles after remeshing 
and require almost the same computing time, but the search 
and interpolation scheme requires more programming 
effort. 

IV.  M O D E L I N G  O F  D R A W I N G  P R O C E S S  

To illustrate the procedures involved and the information 
revealed in modeling, a drawing process will be modeled in 
this section. In a continuous drawing process, material is 
melted in an induction heating furnace and the melt is 
drawn past a mandrel to form a cylindrical tube. The com- 
plex interactions between the temperature, flow, and elec- 
tromagnetic fields prohibit the empirical development of 
this process. An integrated finite element analysis including 
all three fields was developed to optimize the process design 
and the processing conditions. 

For continuous forming processes, such as the drawing 
process considered, the problems are basically steady state 
and the standard Eulerian coordinates are well suited. The 
technical challenge here is to locate the free surfaces. Since 
the solution field is a function of the surface shape which is 
not known a priori, it becomes a geometrically nonlinear 
problem. A mathematical description of the free surface has 
to be defined. An effective way [29] to trace the free surface 

i------ 

m 

FIG. 1. Computed electromagnetic field of induction furnace. 
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is to successively compute the r-coordinates by integrating 
the streamline equation. The location of the starting node 
on the free surface, e.g., die exit, is generally known. 

The process can be described in the following manner. 
First, the induction heating coils induce an eddy current 
on the susceptor, which subsequently generates heat due 
to Joule heating. The electromagnetic field calculations 
provide useful insights for the induction coil design through 
sensitivity analysis of the current density distribution profile 
[ 12]. Next, the induced heat is transported from the suscep- 
tor to the forming material by thermal conduction, convec- 
tion, and radiation. The temperature distribution obtained 
from the thermal analysis is needed to analyze the energy 
balance, the cooling system, and the structural integrity. 

Once the temperature reaches the softening point, the 
material starts to flow under gravity, assisted by the applied 
traction (downstream). Since the material viscosity is highly 

temperature-dependent, the flow rate and the tube dimen- 
sion (free surface) are very sensitive to the temperature dis- 
tribution of the furnace, especially near the die exit where 
most of the shear stresses occur. A finite element viscous 
flow model with steady-state free surface tracking capability 
is needed for analyzing the parametric relationships. 

Since the tube drawing process is continuous, a 
steady-state assumption is applied in both the flow and 
temperature calculations. For analyzing the induced eddy- 
current distribution generated by the induction coils inside 
the furnace, the following assumptions were made [ 12 ]: (1) 
it is an axisymmetric field represented by a single-compo- 
nent vector potential which is perpendicular to the cross 
section; (2) the eddy-current regions, i.e., the susceptor and 
the metallic structure parts, are source-free, and the source 
current is also free of eddy current; and (3) the vector poten- 
tial and the source current are harmonic functions of time 
while the magnetic permeability is field-independent. 

Figure 1 shows a typical contour plot of the magnetic 
field of the furnace; Fig. 2 gives the axial distribution of the 
calculated susceptor shield loss, which is treated as the heat 
source in the heat transfer analysis of the furnace. The com- 
putational domain of the electromagnetic field is much 
larger than the physical furnace size because of a more 
realistic boundary condition. Both the boosting mode and 
the bucking mode of the coil design were numerically tested 
under various frequencies. 

Because the optical thickens of thermal radiation 
is smaller than the furnace dimension, the diffusion 
approximation with an effective thermal conductivity is 
appropriate. The Rosseland mean absorption coefficient 
was integrated over the wavelength band using the frac- 
tional function of the second kind [12, 25]. The computed 
temperature profiles, as shown in Fig. 3, are in good agree- 
ment with the measured data. 

The flow analysis gives the profiles of velocity and 
pressure and the free surfaces, i.e., the inside and outside 
diameters of the drawn tube. Figure 4 shows the calculated 
streamlines of the furnace under certain operating condi- 
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tions. The correlations among the mandrel/die geometry, 
draw speed, ambient environment, and tube dimensions are 
all important factors in the process design. This integrated 
finite element system is indeed a powerful engineering 
analysis tool, which can help optimize the processing condi- 
tions of the existing furnace, as well as shorten the develop- 
ment time of a new furnace with a reduced number of 
experiments. 

V. MODELING OF MICROSCOPIC BEHAVIOR 

The modeling of microstructure features of materials has 
received remarkable attention since the last decade because 
the final use properties of materials depend essentially upon 
their microstructure features. These microscopic models 
attempt to quantitatively predict the microstructure evolu- 
tion with regard to nucleation, growth, and impingement of 
grains, macro and microsegregation, and defect formation. 
In this section, the computational aspects of microscopic 
modeling are discussed without presenting the details of the 
process involved. 

As with the macroscopic behavior of materials in 
processing, several microscopic phenomena are generally 
coupled during microstructure evolution and make the 
microscopic models highly non-linear. Consequently, the 
analytical method is only used for limited conditions, while 
iterative, matrix, or statistical techniques such as the Monte 
Carlo method are extensively utilized. Other simulation 
techniques, such as molecular dynamics, have also been 
broadly used; some excellent discussion on this technique 
can be found in a textbook by Brostow [33] and this sub- 
ject will not be repeated here. In this section, microstructure 
evolution during the solidification and recrystallization 
processes will be discussed. The key techniques used for 
numerical simulation will be highlighted. 

Nucleation 

Nucleation is a very important phenomenon in material 
processing. In this subsection, the modeling of nucleation of 
grains during solidification and recrystallization is reviewed. 
When the temperature of a sample cools from an initial tem- 
perature to a value below the equilibrium temperature of a 
new phase, the new phase attempts to precipitate from the 
existing matrix phase in order to reduce the Gibbs free 
energy of the system. This phenomenon is referred to as 
"nucleation." Nucleation using existing particles as the 
nucleation substrate is termed as "heterogeneous nuclea- 
tion." In the practical case, the heterogeneous nucleation is 
the major mechanism of nucleation of grains during 
solidification and recrystallization. 

During the solidification process, the nucleation rate, 
dn/dt, can be modeled by the thermodynamics and kinetics 
of phase transformation theory for a single type of nuclea- 
tion site. This nucleation equation is a highly non-linear 
function of time and undercooling. Consequently, the 
integration of nucleation rate as a function of time and 
undercooling requires a very small time step during the 
simulation process. This integration gives the final grain size 
in the material. Several semi-empirical nucleation models 
based on experimental observation and theoretica ! analysis 
have been developed [-31-37]. These models may predict 
the grain size in the castings as a function of cooling rate and 
grain refiners. Of these models, the general Gauss function 
[31, 32], based on statistical analysis, fits the observations 
better. The calculated grain size and density of grains from 
this model as a function of cooling rate are given in Fig. 5 
with the experimental results shown for comparison [38]. 

During the recrystallization process, grain boundaries, 
dislocations, and other defects in the solid phase play an 
important role for the heterogeneous nucleation of grains. 
In this case, statistical models (nuclei are assumed to appear 
randomly in both space and time) such as the Johnson- 
Mehl model (constant nucleation rate) [40, 41] and the 
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instant nucleation model [42] are used to describe nuclea- 
tion during recrystallization. Since this instant nucleation 
model is almost a delta function, it requires a small time step 
for obtaining accurate results. 

Growth o f  Grains during Solidification 

The kinetics of the growth of grains is governed by the 
volume diffusion of solute and the interface curvature of the 
grain, which can be expressed by Fick's law and the Poisson 
equation. During solidification, the volume diffusion of 

solute in the liquid is the dominant factor of the growth 
kinetics. The growth rate of the dendrite, or eutectic phase, 
v, at a given undercooling, A T, can be carried out by solving 
the diffusion equation [43-46] and by using the surface 
instability theory [47, 483. For both dendrite and eutectic 
solidification, the grain growth rate can be approximately 
expressed as a polynomial expression of undercooling. In 
addition, the nucleation may occur simultaneously during 
the growth process. The coupled nucleation-growth process 
needs a more restrictive time step during simulation to 
obtain convergent results. 

Growth o f  Grains during Recrystallization 

During recrystallization (also known as Ostwald 
ripening), the growth of grains is governed by the surface 
energy characterized by the interface curvature of the grains 
rather than the volume diffusion of mass. This process is 
referred to as the "multiparticle diffusion problem," as 
shown in Fig. 6a, where the location of particles in space 
is random. This problem can be described by the Poisson 
equation, 

020 N 

- -  j21= -- 4rcflj6(r i -- r~ ), (23) Ox 2 

where N is the number of sources and sinks in the system, 
r i and r{ are the dimensionless vectors locating the arbitrary 
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field point and thejth source or sink, fli is the strength of the 
ith source or sink, and 0 is the dimensionless temperature, 
pressure, solute concentration, etc. 

The Poisson equation can be solved by the method of 
potential theory. A general solution to the Poisson equation 
is the linear combination 

O(r,) = flo +j~=, Ir~- r~l' 

where flo is some constant reference potential which, in 
general, is nonzero. The flj series will converge only under 
the condition [49] 

N 

lim Z flj=0. 
N---~ oo j =  1 

If a spatial location of the particles may be specified 
through the use of a periodic arrangement such as the 
Bravais lattice and a unit cell in which the location of the 
particles in space is at random, the above equation can be 
reformulated into a rapidly convergent series. The Bravais 
lattice provides the overall spatial periodity, whereas the 
unit cell provides the spatial randomness necessary to 
model stochastic multiparticle diffusion [49, 50]. 

When the location of particles in space obeys the 
above arrangement, the growth rate of grains, dRi/dt,  can 
be calculated by applying the boundary conditions, 
Oj = - 1/Rj, to the multiparticles diffusion solution, 

d R  i fl i 
d t  = ~ 2 2 '  i = 1 , 2  . . . . .  N 

and/;i can be derived by the set of linear equations, 

rj= J j ,  

where 

The calculated grain size evolution as a function of time 
is shown in Fig. 6b [-50] at a volume fraction o f f =  0.35. 
According to this solution, the smallest grains dissolve 
quickly, the grains with medium size grow at the beginning 
and Shrink after a certain time, and the biggest grains con- 
tinue to grow gradually. This method can obtain a relatively 
stable and convergent solution for a large range of time 
steps, but it requires that the number of particles must be 

(24) large enough to obtain the approximate stochastic distribu- 
tion of grains in the space, e.g., more than 3000 particles. 
The simulation with so large a number of particles is, of 
course, computationally intensive. 

Although the matrix method can provide a relatively 
quick solution, it requires several restrictions, such as: the 
particles must be spherical, no secondary phase particles 

(25) exist, etc. In this case, the Monte Carlo method is applied 
to simulate grain growth during the recrystallization 
process [-51-53]. The Monte Carlo method for solving a 
deterministic problem such as grain recrystallization is 
performing an experiment in which each particle movement 
is considered as a random process until it is absorbed on a 
barrier (e.g., the grain boundary). This method can provide 
a more accurate microstructure with various grain 
morphologies and converge at a much larger range of condi- 
tions, such as the presence of secondary phase particles, 
anisotropic grain boundary energies, and abnormal grain 
growth. However, it is worth noting that the convergence of 
the Monte Carlo method is usually slower than that of the 
matrix calculation. In addition, the Monte Carlo method 
needs to calculate the movements of more than 40,000 
particles [50] to perform the microstructure evolution. 

(26) When using the Monte Carlo method, a continuum 
microstructure is mapped onto a discrete lattice containing 
a large number of lattice sites, N (Fig. 7). Each lattice site is 
assigned a number between 1 and Q which corresponds to 
the orientation of the grain in which it is embedded. Lattice 

(27) sites which are adjacent to neighboring sites having different 
grain orientations are regarded as the grain boundary while 
sites surrounded by the same grain orientation are the grain 

0, j=0 ,  f l j , j = O , N ,  
YJ = - 1~R j ,  j = 1, N,  

where flj is the sink strength, and the coefficient matrix, gij, 
is expressible in symmetric form. When the volume fraction 
tends toward zero, i.e., f ~ 0, a particularly simple form of 
the coefficient matrix can be obtained: 

["R~ -1 0 0 . . . . . .  l q  

)~ i j=[  0 R~ 1 0 0 .-- 1 / 

L " i  . . . . .  i . . . .  i . . . . . . . . .  o d  

2 2 2 / 4  4 4 4 4 4 4 / 9  9 ~ ~ 9 9 
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interior. The grain boundary sites are considered to possess 
a positive energy while sites in the grain interior have zero 
energy: 

G = - a  ~ (dsisj- 1), (28) 
n n  

where G is lattice site energy, a is a positive constant, Si 
corresponds to the orientation of site i (1 ~< Se ~< Q, Q is a 
large number), and the sum is taken over the nearest 
neighbor nn sites. 

The kinetics of boundary motion are simulated by 
employing a Monte Carlo technique in which a lattice site 
is selected at random and its orientation is randomly 
changed to one of the other grain orientations. In the 
standard Monte Carlo method, a lattice site is selected at 
random, and a new trial orientation is also chosen at ran- 
dom from one of the other ( Q -  1) possible orientations. 
The transition probability, W, is then given by 

~exp(-AG/kBT),  AG>0, (29) 
W = ( 1 ,  AG<~O, 

where AG is the change of the Gibbs free energy cause by the 
change in orientation, kB is the Boltzman constant, and Tis 
the absolute temperature. Successful transitions at the grain 
boundaries to orientations of the nearest neighbor grains 
correspond to boundary migration. A segment of the 
boundary, therefore, moves with a velocity, vi, related to the 
local chemical potential difference, AGi, by 

v~ = m[1 - exp(-AG~/kB T)]. (30) 

The prefactor, m, constitutes a boundary mobility and 
reflects the symmetry of the mapped lattice. The unit time is 
defined as 1 Monte Carlo step (MSC) per site, which 
corresponds to N microtrials or reorientation attempts, 
where N is the total number of sites in the system. The 
calculated grain size evolution as a function of time is shown 
in Fig. 8. Compared with the same calculation conducted by 
the matrix method, the grain size evolution in Fig. 6b is 
very similar. Also, the grain size distribution calculated from 
the Monte Carlo method is compared with that calculated 
from the analytical solution as in the above solution. The 

t = 2000 MCS t ffi 10,000 MCS t = 85,000 MCS 

FIG. 9. Cross section of 3D microstructure as a function of time f o r f  = 0.01 [53 ]. 
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prediction of the Monte Carlo method is closer to measured 
grain size distribution [52]. 

When secondary phase particles are present, they are 
incorporated into the model by making their orientations 
different than those of the primary sites. In this way, the 
particles-matrix interface has the same energy as the 
grain boundary. By using the above assumptions, a 3D 
microstructure evolution as a function of time at a given 
volume fraction, f = 0.01, is shown in Fig. 9. 

Defect Formation 

Since the final properties of materials depend strongly on 
defects in those materials, defect formation has received 
significant attention in modeling of material production 
processes. Among other defects, porosity (or voids) in 
castings or other materials is considered the major defect 
which impairs the mechanical properties and service life of 
materials. Most porosity forms during the cooling or 
solidification processes. During solidification, the fraction 
solid increases with the cooling of the material. When the 
solid-liquid interface advances toward bulk liquid, the gas 
dissolved in the melt is rejected at the interface because the 
solid phase exhibits an extremely low solubility in gas. Con- 
sequently, the gas concentration in the bulk liquid increases 
with fraction solid until pores form. Simultaneously, when 
the liquid phase transforms to the solid phase and cools 
from a high temperature to a low one, volume contraction 
occurs. This is referred to as "shrinkage." The coupled effect 
of gas enrichment in the liquid and shrinkage at the solid- 
liquid interface is the major origin of porosity forma- 
tion [38, 39]. 

The enrichment of gas in the liquid can be described by 
the Brody-Flemings equation as indicated by Fang and 
Granger 1-38]. Once the pores form, the variation of pore 
volume fraction can be evaluated by using a general mass 

balance equation. Zou et aL [39] have developed a mathe- 
matical model to describe the nucleation and growth of 
pores. Their model permits the prediction of the pore forma- 
tion as regards to pore size, pore distribution, and amount 
of porosity in the castings. The calculated and measured 
amounts of porosity are presented in Fig. 10 [59, 60]. 

Vl. M A C R O / M I C R O S C O P I C  M O D E L I N G  

As discussed in the previous section on modeling of 
macroscopic behavior, most macroscopic equations can be 
solved by the finite difference method or finite element 
method. The formulation of the macroscopic finite dif- 
ference or finite element equation is often written as a linear 
funtion. However, the equations in modeling microstruc- 
ture, such as the nucleation, growth, and impingement 
equations are highly nonlinear. In this case, several techni- 
ques have been developed to optimize the coupled macro/ 
microscopic modeling process. 

There are two types of macro/microscopic modeling: (a) 
placing microscopic models into macroscopic models and 
(b) applying the general macroscopic equation to the 
microstructure scale. When placing the microscopic models 
into macroscopic models to predict microstructure evolu- 
tion, the validity of the assumptions used in the microscopic 
model and nonlinearity of most microscopic models have to 
accounted for. When applying the macroscopic model to the 
microstructure scale in such cases as interdentritic fluid 
flow, filtration, and porosity formation, an average method 
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is most often used to overcome the difficulty imposed by the 
complex microscopic geometry. 

A schematic representation of the heat transfer macro/ 
microscopic modeling process is illustrated in Fig. 11 [31 ]. 
The macroscopic part of the model is used essentially to 
enmesh the volume to be simulated and then to calculate the 
heat flow, qext(i, t), going out of each mesh from the tem- 
perature, T(i, t), or variation of the enthalpy at each node 
(i). Two basic methods were applied to incorporate 
microscopic models into a macroscopic model: (a) a directly 
coupled macro-micro scheme called the latent heat method 
(Fig. 12a) [34]; and (b) a decoupled macro-micro scheme 
called microenthalpy (Fig. 12b) [-58]. The first approach is 
fully explicit in time and the second approach is fully 
implicit in time. Since the micromodels are highly nonlinear 
functions, the stability and convergency of numerical solu- 
tions emerge when they are incorporated into the macro- 

models which are essentially a set of linear functions. In 
addition, when placing mieromodels into macromodels the 
assumptions made for the microscopic models may not be 
available for the macroscopic model. However, the finite 
difference method or some other numerical method allows 
these assumptions to still be valid in the scale of mesh size 
in which the micromodels are applied. 

The first method directly incorporates the microscopic 
models into the macroscopic model at each time step. The 
temperatures calculated from the macromodel are used to 
evaluate the microstructure evolution which is described 
by the micromodels. Then, the variation of fraction solid 
calculated from the micromodels is fed directly back into the 
next time step of macroscopic calculation. The advantage of 
this method is in obtaining an accurate solution. It is found 
[-34] that the numerical solution converges primarily with 
smaller mesh size rather than smaller time step. As a result, 
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to gain an accurate solution by adopting a finer mesh size 
leads to a larger number of meshes in the 2D and 3D simula- 
tions. This is the major disadvantage of this method. 

The decoupled macro-micro method developed by 
Thevoz et al. [58] separates the microscopic calculation 
from the macroscopic calculation. The macroscopic calcula- 
tion has been performed by the standard enthalpy method 
without feedback from the microscopic model. A much 
smaller microscopic time step has been proposed, e.g., 
Atmic = Atmac/100 to obtain stable and convergent macro- 
micro results. In this case, a larger macroscopic time step 
and mesh size can be used in the simulation. This feature is 
very important for any future applications of microscopic 
models, because the computer calculation time increases 
dramatically with the number of nodes. As can be seen, the 
solution calculated through this approach is less accurate 
than that through the former method. 

A combination of these two techniques has been 
proposed to improve the accuracy of the decoupled method. 
When solidification begins, the temperature in the 
microscopic model is separately calculated during solidifica- 
tion until the end of solidification. At each time step of the 
macroscopic calculation, A t . . . .  only intermesh heat flow 
will be given to each volume element. This heat flow is used 
as the thermal boundary condition during a macroscopic 
time step, while a much smaller microscopic time step is 
used to evaluate nucleation, growth, and impingement of 
grains and then fraction solid in each separated mesh. 

The variation of fraction solid during a macroscopic time 
s t e p ,  A t . . . .  is calculated from the sum of the variations in 
fraction solid over these microscopic time steps in one 
macroscopic step. Then, this variation of fraction solid is fed 
directly back to the macroscopic model to perform the next 
macroscopic time step calculation. The microscopic tem- 
perature in each mesh is not linked to the macroscopic tem- 
perature. This feature is the key to maintaining the stability 
and convergency of the solution. This method allows us to 

obtain a stable microstructure evolution through the 
separated microscopic calculations and to determine the 
accurate macroscopic heat flow by feeding the variation of 
fraction solid directly back to the macroscopic heat flow 
calculation. Consequently, a more accurate solution than 
that of Thevoz et al's can be expected. Meanwhile, this 
method retains all the merits of the previous method. An 
example of the macro/microscopic calculation of tem- 
perature evolution is shown in Fig. 13. 

VII. C O N C L U D I N G  REMARKS 

Numerical modeling of the macroscopic and microscopic 
behavior of materials in processing have been reviewed. The 
formulation of the partial differential equations that govern 
the macroscopic behavior of materials processing, based on 
the material continuum assumption, has been presented. As 
a demonstration, a continuous drawing process has been 
modeled to illustrate the procedure involved and the infor- 
mation revealed. In microscopic modeling, the numerical 
and statistical techniques used to simulate the micro- 
structure formation of materials have been reviewed first. 
Examples applied to solidification and recrystallizat!on as 
well as defect formation have then been discussed. 

The microscopic models may also be incorporated 
into the macroscopic models to provide more detailed 
processing information and physical insight into the 
material microbehavior. An examination of the approaches 
that incorporate the microscopic models into the macro- 
scopic models has been reviewed. Several approaches for 
macro/microscopic modeling have been developed to 
obtain stable and convergent solutions with larger time 
steps and especially larger mesh sizes. This is crucial for 
future applications of macro/microscopic modeling. 

Many numerical techniques have been utilized for 
processing modeling. As indicated in the review, the most 
popular two are the finite element and the finite difference 
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methods. Although finite difference methods today are not n 
as popular as they once had been, some well-proven nn 
programs are still widely used [1,2,61,62]  and new N 
schemes are continuously being developed [4, 6-8, 63]. p 
During the past 15 years, finite element methods have q 
become a common tool for modeling material processing Q 
[64]. More recently, boundary element methods have ri 
appeared as a promising alternative approach [65, 66]. R 

Owing to rapid developments in the microprocessor field S 
during recent years, personal computers with sufficient t 
capacity to perform finite element and finite difference T 
calculations are now available, while advances in software u,. 
have allowed a user-friendly interface to be provided [67]. U* 
It is expected that the artificial intelligence or expert system W 
techniques will be incorporated into the modeling process, x~ 
especially in the areas of mesh generation and result inter- Yj 
pretation [4, 68, 69]. fl~ 

As computer capacity increases and the cost of computa- 7~ 
tion decreases, it is to be expected that more and more 6 o 
three-dimensional problems will be attempted. A major t/ 
stumbling block is the difficulty of interpreting the results, t/m 
In two-dimensional analyses, graphical displays of meshes 0 
or results are considered almost essential. For three-dimen- 
sional problems, graphical displays of results or input are 
considered even more essential [30, 61 ]. Unfortunately, the 
three-dimensional representation of three-component vec- 
tor fields in an easily interpretable and comprehensible 
fashion is still an unsolved problem. Hence the cost of three- 
dimensional solutions will, for the foreseeable future, 
remain high in terms of human labor, even though the 
computational cost is decreasing rapidly. 

a 

Ai  
bi 
Bi 
c. 
C~k 
e~yk 
Ei 

f 
F 

gi 
G 
hc 
H 
J 
k 
kB 
K 
L 
m 

APPENDIX:  N O M E N C L A T U R E  

constant 
vector field, 8Ak/c~xi = Bi 
body force, N 
magnetic-flux density 
specific heat capacity, Jim 3 - K 
third-order tensor resistance coefficient 
permutation symbol 
electric-field intensity 
volume fraction 
emissive-geometric factor 
gravitation, m/s 2 
lattice site energy, J 
heat transfer coefficient, W/m 2 - K 
magnetic-field intensity 
current density 
thermal conductivity, W/m - K 
Boltzman constant, J / K  
consistency index or permeability, m 2 
heat of fusion per volume, Jim 3 
boundary mobility, m/s 

P 
#m 
P 
Pl, P2 
O" e 

6~j 

(7 SB 

Z 
~x//St 

flow index 
nearest neighbor sites 
number of sources and sinks in the system 
pressure, N/m 2 
heat flux, W/m 2 

a large number 
dimensionless location vectors 
radius of grains, m 
surface tension coefficient or surface, m 2 

time, s 
temperature, K or °C 
velocity vectors, m/s 
element convection velocity, m/s 
transition probability 
Cartesian coordinates, m 
negative curvature of grain interface, - l / R  j, m -  1 
sink strength, m3/s 

rate-of-tensor 
Kronecker delta 
apparent viscosity, m2/s 
magnetic permeability 
dimensionless temperature, pressure, solute 
concentration, etc 
viscosity, N -  s/m 2 
magnetic permeability 
density of materials, kg/m 3 
principal radii of curvature of surface, m-  1 

electric conductivity 
stress tensor 
Stefan-Boltzman constant, W/m 2 - K 4 
dissipation function 
finite element shape function 
coefficient matrix 
velocity of the mesh, m/s 

Subscripts 

ext at the interface 
E Eulerian description 
i, j, k coordinate index 
l liquid or liquidus 
mac macroscopic 
mic microscopic 
M moving mesh 
r radiative 
s solid or solidus 
oo ambient state 
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